Ubiquitous Learning: An International Journal

sets out to define an emerging field. Ubiquitous learning is a new educational paradigm made possible in part by the affordances of digital media.

Ubiquitous Learning is a counterpart to the concept 'ubiquitous computing', but one which seeks to put the needs and dynamics of learning ahead of the technologies that may support learning. The arrival of new technologies does not mean that learning has to change. Learning should only change for learning's sake. The key perspective of the conference and journal is that our changing learning needs can be served by ubiquitous computing. In this spirit, the journal investigates the affordances for learning in the digital media, in school and throughout everyday life.

Ubiquitous Learning: An International Journal is peer-reviewed, supported by rigorous, criterion-referenced article ranking and qualitative commentary processes, ensuring that only intellectual work of significance is published.

Ubiquitous Writing: Writing Technologies for Situated Mediation and Proactive Assessment

Vive Kumar, Maiga Chang and Tracey Leacock
Ubiquitous Writing: Writing Technologies for Situated Mediation and Proactive Assessment

Vive Kumar, Athabasca University, Edmonton, Canada
Maiga Chang, Athabasca University, Edmonton, Canada
Tracey Leacock, Simon Fraser University, Burnaby, Canada

Abstract: Writing is a core skill students are expected to develop early in their schooling. However, tracking and understanding the development of learners’ expertise in writing poses considerable challenges, given the complexity of the writing process and the volume of data. This paper discusses two technologically-enhanced pedagogical methods that hold the potential to enhance writing competence. The first method uses a situated learning activity involving the use of cellular phones to assist mobile learners. The second method tracks learners’ activities as they complete a writing exercise using a special mixed-initiative editor called MI-Writer. Preliminary results from two studies, one conducted in Taiwan involving a mobile learning treasure hunt, and the second conducted in New Zealand provide insight into possible uses of these pedagogical approaches to support mobile student writers. We use the results of the studies to emphasize the need for ubiquitous, situated, mixed-initiative writing support for students. We present an overview of the technology behind these two platforms and discuss their real-world applicability based on experimental studies. These technology platforms could be extended to measure individual competencies, identify writing competency-gaps, and promote means to address these gaps.

Keywords: Ubiquitous Writing, Situated Writing, Mixed-Initiative Interactions, Mobile Technologies, Model Tracing

Introduction

BEYOND THE FIRST few years in school, learners are expected to be able to write effectively across a wide range of disciplines and genres, yet learners seem to have difficulty achieving such a level of mastery (Ball, 2006; Korbél, 2001; Salahu-Din, Persky, & Miller, 2008). Despite this mismatch between expectations and observations, effective writing skills continue to be important in school, in the workplace, and, increasingly, in purely social contexts. To address this gap, many schools and universities have developed specialized interventions to help improve academic writing skills. These range from providing writing support from peer or professional tutors or reviewers (e.g., Cho & Schunn, 2007; Nelson & Schunn, 2009), to providing explicit strategy instruction (e.g., Boscolo, Arfé, & Quairisa, 2007; Graham, 2006; Wallace et al., 1996), to requiring all students to take a single course focused on the basics of writing (see Carroll, 2002 for a critique of this approach), to integrating writing-intensive courses into the disciplines so students have multiple exposures to writing for different academic purposes (e.g., Burk, 2006; Defazio, Jones, Tennant, & Hook, 2010). However, given the volume of data generated, it can be difficult to assess the impact of such interventions (Duke & Sanchez, 2001; Melzer, 2009).
Advances in technology may be able to help both with the task of helping learners to become better writers and with the goal of collecting and analyzing data on the impact of writing interventions on academic writing.

Writing Processes

Writing is a goal-directed activity that involves a range of interlinked cognitive processes (Flower & Hayes, 1981). In their seminal 1980 paper, Hayes and Flower (see also Hayes, 1996) introduced a cognitive process model of writing that acknowledged the complexity and recursion involved in the writing process. Hayes and Flower described writing as involving three major cognitive processes – planning, translating, and reviewing – and several sub-processes, each of which may come into play throughout the writing activity. Skilled writers often switch back and forth across all three major processes as they build and refine their texts. This natural switching complicates attempts to study writing by making it difficult to isolate individual processes. In this chapter, we provide a brief introduction to writing processes based on Hayes and Flower’s model and discuss how technology-enhanced approaches to writing instruction may help both writing researchers and student writers.

Planning

In writing, planning involves setting goals, generating ideas, and organizing those ideas to fit the goals. Winne and other self-regulated learning researchers have noted the centrality of goal definition in all learning tasks (Leacock, Winne, Kumar, & Shakya, 2006; Winne, 2001). The instructor typically provides some goal-related information as part of the assignment, but learners will use their own understanding of this information, along with cues from other external sources, such as peers, reference documents, or authentic contexts in which a particular learning activity may be taking place (e.g., a treasure hunt), to guide the generation of ideas (Klein & Leacock, in press). Thus, one way technology may help student writers is by assisting them to align their writing goals with those intended by their instructor so that the ideas they generate will be on-topic (Hadwin, Winne, Nesbit, & Kumar, 2005; Venkatesh, Wozney, & Hadwin, 2003; Zhou & Winne, 2009).

The organizing sub-process can take many forms. In some cases, the writer may be able to organize the ideas in his or her head, but more often in school-based writing, learners are asked to organize their ideas on paper or on screen via notes, outlines, or other pre-writing activities. Using such external artefacts can help writers manage the cognitive load associated with both holding multiple ideas in mind and experimenting with different organizational structures. Prior knowledge can also affect students’ ability to generate ideas and organize them (DeGroff, 1987). Because students are typically asked to write about topics in which they don’t yet have expertise, advances in technology have the potential to assist writers both by supplementing limited prior knowledge and by easing the working memory load associated with reorganizing ideas and comparing different structures (Winne, 2001; 2006). Finally, helping writers to identify when they should revisit their writing plan is yet another way that technology may be able to enhance student writing (e.g., Zellermayer, Salomon, Globerson, & Givon, 1991).
Translating

Flower and Hayes define translating as “putting ideas into visible language” (p. 373; 1981). Whether writers use pen and paper, laptop computers, or mobile devices, translating involves taking the ideas in one’s head and the collection of notes or other outputs from the planning process and turning them into formal text. A number of technology solutions, such as automatic spelling and grammar checkers, are already widely available to help students produce correct orthography and syntax, and some researchers have also proposed tools to help students make better diction choices (e.g., Hayes & Bajzek, 2007). Additional technological supports that help students translate their ideas into language appropriate for a specific assignment hold the potential to improve student writing.

Reviewing

The importance of review processes is often underestimated by student writers, who see it as involving either the correction of minor surface level features, such as typos, or as evidence that the writer has done something very wrong and has to “start from scratch again” (Leacock, 2007). Yet, the majority of reviewing activities fall somewhere between these two extremes (Flower, Hayes, Carey, Schriver, & Stratman, 1986; Gilmore, 2007; Hayes, 2004). Reviewing involves three sub-processes: reading, evaluating, and revising (Flower & Hayes, 1981; Hayes, 1996).

Reading

For competent readers, reading one’s own text for meaning is relatively easy; however, attending closely enough to the actual text (rather than the intended meaning) to identify errors is more difficult. Writing guides often recommend that students have a peer read the text out loud to the writer instead, and there is some evidence that this leads to more effective reviewing (Scarcella, 2003). Technologies that can read the text-so-far out loud may be one means of supporting the review process (e.g., see Raskind & Higgins, 1995 for a study of college students with reading disabilities who used text-to-speech software).

Evaluating

Evaluating involves comparing the text-so-far with the writing goals at both local and global levels, making evaluation a high-load process. Technologies that can scaffold writers through systematic evaluation processes may help writers to correctly locate and identify problems with their text. Technologies can also support logistical challenges involved in peer evaluation. For example, the Scaffolded Writing and Reviewing in the Discipline software (SWoRD; Cho & Schunn, 2007), provides a system both for distributing/returning peer reviews and for calculating and assigning grades to writers (based on multiple peer reviews) and reviewers (based on evaluations completed by the writers).

Revising

Once students have located a problem in their text, identified the type of problem, and decided to take action to repair it, they still may lack the requisite knowledge and skills to make an
effective repair (Winne, 2001). Technologies that help to guide students or provide possible solution approaches may help students make better revision decisions (Cho, Chung, King, & Schunn, 2008).

The evaluating and revising sub-processes, in particular, create high cognitive load for student writers, and tools that would help students to minimize or automate portions of this load are likely to assist learners in becoming better writers. The Concept Revision Tool, which analyses student texts and prompts them to reflect on specific concepts within their texts is an example of a technology designed to help students with the process of reviewing (Jucks, Bromme, & Schulte- Löbbert, 2007).

Writing Contexts

In addition to drawing on a range of cognitive processes and resources, writing activities also take place within a given context. The typical in-school writing assignment requires learners to work independently and submit their text to a one-person expert audience – the teacher. With the influx of technology to both the classroom and daily life, the social context of academic writing is changing rapidly. Now, students frequently collaborate with peers across all writing processes, and written work may be published to the whole class or even to more public audiences through the use of social media technologies (Cho & Schunn, 2007; Cummings and Barton, 2008; Warschauer & Ware, 2008). As learners become more used to writing collaboratively for real audiences, there is great potential to use technologies designed to facilitate collaboration and the sharing of information as tools to help students improve their writing.

The remaining sections of this chapter present two preliminary studies that provide insight into ways that new technologies may be harnessed to enhance writing competence. This review mostly addresses writing processes concerning adult writers. These two studies however attempt to engage high school students in some of these processes.

Study 1: Mobile Treasure Hunting

Initially, the use of mobile devices in instructional settings was tentative, but there have now been numerous K-12 projects that have integrated cellular phones into a variety of authentic instructional contexts with powerful results (Horkoff & Kayes, 2008; Keegan, 2002; Tremblay, 2010). (See also http://k12cellphoneprojects.wikispaces.com/ for examples posted by teachers.) Instructors are increasingly also recognizing the benefits of situated learning (Anderson, Reder, & Simon, 1996), and one popular approach to situated learning is the treasure hunt (Chang & Chang, 2006; Wu, Chang, Chang, Yen, & Heh, 2010). The current study investigated the use of cell phones to augment a treasure hunt learning activity in which students used the phones to aid them in locating historical and cultural artefacts in the city that had been tagged with QR-codes.

The Mobile Treasure Hunt as a Pedagogical Model

Figure 1 shows the mobile treasure hunting model used in the study. This model has two phases: the prior knowledge assessment phase and the hunting phase. Assessment can be achieved with traditional paper-pencil tests, through computerized tests, or a mix of tradi-
tional and online methods. The system determines the initial knowledge level of the student (step 1 in Figure 1) based on the data from these assessments and uses this to characterize the student’s knowledge structure. The system then uses these results and the current location of the student to generate a customized quest for relevant artefacts tagged with QR-codes in the immediate vicinity of the student (steps 2 and 3 in Figure 1). Once the system has generated the quest, it sends the quest and the relevant guidance to the student’s cell phone via Short Message Service (SMS; step 4 in Figure 1).

Figure 1: Treasure Hunting Architecture

Each quest consists of a puzzle that the student must solve to identify the intended destination. For example, the quest may mention the symptoms of a disease and that the chief of an ancient village is looking for medicinal plants known to cure the disease. This requires the treasure hunter to identify the disease before searching for the plants. When the treasure hunter finds something relevant, s/he can use the built-in camera to take a picture of the QR-code attached to the artefact (step 5 and step 6 in Figure 1). Some quests may ask the student to observe a phenomenon to answer a question and to then text the answer back to the system (step 6 in Figure 1). The system validates the student’s answer by interpreting the QR-code or text (step 7 in Figure 1). If the answer is validated, the system will proceed to offer another puzzle (i.e., quest) for the student. This process continues until the final treasure, a virtual box containing gold and weapons/armour, has been found.

The components of a quest are like jigsaw pieces (see Figure 2). The background information, puzzle description, clues, and quest elements of the story all fit together to enable the student to complete the puzzle. Each piece also corresponds with a number of sub-goals of the story, which itself is like a larger jigsaw puzzle. Students are required to solve the sub-goals in a prescribed sequence/order to receive next piece.
Methods

This preliminary study was conducted with 18 participants (all 11 years old) from a grade 5 class at an elementary school in Tainan, Taiwan. Each student was given a Nokia 5800 mobile phone with built-in GPS, camera, touch screen, Bluetooth functionality, and running the Symbian operating system. GPS signals were used to determine the general location of each student, and information on the most recent QR-code scanned was used to determine more precise locations.

The quests were built around the historical and cultural artefacts of the Five-Harbor District. A total of 12 artefacts were spread across the five areas in the District. The treasure hunt was designed to last two to three hours, with the goal of introducing 5 artefacts situated in three different areas to each student. Each student’s prior knowledge assessment was used in determining the five artefacts that student would look for. A key goal of the exercise was to enable students to study the selected artefacts in their authentic historical contexts (see Figure 3).

![Figure 3: Some Artefacts were Located in the Medicine King Temple](image1)

![Figure 4: Scanning a QR-code using the Phone](image2)

Students were asked to complete three tasks for each artefact. The first task for the student was to use the QR-code to verify whether the artefact was adjacent to a targeted historical building (see Figure 4). The second task was to travel to a specific location to identify a particular relic as instructed by a pop-up message on the cell phone screen. For the third task, the student had to discover specific information found in the area of the relic in response to a question sent via the cell phone and send their answer back to the instructor for evaluation.

At the end of each treasure hunting field trip, “students were interviewed completed a questionnaire” that asked them about whether:

- They liked the treasure hunting activities
- They preferred learning outside the classroom or inside the classroom
- The mobile phone interface was easy to use during the treasure hunting trip
Results and Discussion

This study investigated two key questions: whether students liked the notion of a treasure hunt as part of their educational field trips and whether students who preferred outdoor activities had higher motivation in treasure hunting than students who preferred indoor activities. Out of the 18 participants, 16 were positive about their treasure hunting experiences on the questionnaire; the video-taped interviews confirmed this finding. The results also showed that mobile and situated learning activities made students excited about their learning environment, particularly students who were already outdoor-inclined.

Mobile devices and applications are becoming ubiquitous, yet they are under-used in educational contexts. The study reported here shows how mobile devices can be used to take learning outside the confines of the classroom into authentic contexts.

During treasure hunting activities students actually role-play an actor in the story of the virtual world. They interact with virtual people in the virtual world and touch/observe objects in the real world. The interlacing of interactions between these two worlds establishes the learning context. For instance, students can accompany Alexander the Great in the virtual city of Alexandria and listen to his whispers and plans for real. These experiences motivate and help students establish the context for writing.

As a next step, we intend to extend the current mobile device treasure hunting activity with targeted writing tasks that encourage students to write about relevant features of their surroundings. Although the small screens of mobile devices may not at first seem conducive to academic writing, there is clear evidence from pop culture that users of these devices may have other ideas about appropriate use. For example, the cell phone novel is now a cultural phenomenon in Japan (Onishi, 2008). This does not mean that cell phones will replace other tools of writing, but it does show they may be viable options as supplementary academic writing tools. Students can use cell phones to take on-site notes, keep a record of route information, etc. during their field trip; these records can later be used to help generate and organize ideas to create a written report on what the student has learned. Taking advantage of the tools that students already use to help introduce them to the concepts and techniques of formal writing has the potential to increase student interest in academic writing.

Study 2: A Writing Interface with Mixed Initiatives

A mixed-initiative system is one that gathers data on a learner’s interaction with the system, creates statistical and heuristic inferences, and uses these inferences to proactively offer feedback to the learner at instructionally opportune times (Allen, 1999; Guinn, 1999). In addition to traditional academic performance data, mixed-initiative systems collect a range of learning-process data that is not easily observed or recorded by the instructor. For example, in the context of writing, such learning-process data may include information on when learners correct grammar, modify complex sentences, split larger paragraphs into smaller ones, and attempt to revise vocabulary.

Most intermediate schools in New Zealand offer well-defined writing models (see http://www.tki.org.nz/r/assessment/exemplars/eng/ for sample models of writing) to their students. However, it is extremely time consuming for teachers to monitor student writing habits and provide formative feedback to students as they learn to write using these prescribed models (Duke & Sanchez, 2001). In general, it becomes hard for teachers to extract useful
information from the reporting tools of online learning platforms when there are a great number of students (Dringus & Ellis, 2005), and teachers are more likely to provide summative assessments only. In an effort to support teachers in their attempts to provide both formative and summative feedback to students, we developed the MI-Writer system – educational software that tracks the writing processes and the development of writing skills of students, with respect to prescribed writing models, as they undertake specific writing exercises. The software enables teachers to focus on an individual’s writing skill development as well as observe emergent patterns of writing habits for the entire class. Further, the software can provide model-specific feedback to students, as prescribed by the teacher.

A preliminary study was conducted to test the applicability of a mixed-initiative writing system in an authentic grade 5-7 classroom setting, where students engaged in a letter-writing exercise over a period of three months. Students used MI-Writer to prepare an outline and then to develop the outline into a full letter; MI-Writer captured the activities of individual students as they worked. During the exercise, the teachers modelled formative writing activities, such as brainstorming, self-reflection, concept mapping, and intermediate peer evaluation, as well as writing outcomes and summative assessments, such as appropriate theme, structure, language, and peer evaluation in the final letter.

MI-Writer: The Technology

The outline categories visible to students in MI-Writer were designed by the teachers, and the interface was intentionally kept simple for students. Figure 5 shows a screenshot of MI-Writer. Students prepare their outline on the left and create the letter on the right. The recorded data sets were stored locally and were sent to the server at regular time intervals.

MI-Writer records every keystroke the student makes and compiles the keystrokes into words, phrases, sentences, and paragraphs in a writing ontology. For example, one particular student entered the following sequence of keystrokes before settling on the final form of the word – {ingredint}->{ingreedint}->{ingredient}.

MI-Writer receives data from multiple sources that continuously update the writing patterns the teacher is interested in exploring. For instance, a teacher might be interested in identifying each sentence created by a particular student that contains more than 8 words and took more than 5 minutes to construct. Computationally, the pattern is represented as follows: <pattern-id 110> is constrained by <sentence-id s>, <student-id i>, <greater-than-number-of-words 8>, and <greater-than-time-span-in-minutes 5>. At the beginning, the patterns are just empty templates, awaiting data. A pattern is successfully recognised once all the parts of the pattern are filled with data. MI-Writer will attempt to fill in this pattern with data flowing into the system from various sources. Note that a pattern corresponding to a single pattern-id can be instantiated, i.e., filled in, multiple times with different sets of data. In a similar fashion, MI-Writer translates raw data into abstract elements such as words, sentences, spelling corrections, grammatical corrections, and time taken to create a linguistic element. Since the raw data arrives into MI-Writer continuously, the abstract elements are continuously created and updated in the underlying ontology.
Methods

The preliminary study involved 15 students from a school in Wellington, New Zealand who consented and had their parents consent to participating in the study. Students who opted not to participate in the study also had access to MI-Writer, but the system did not record any of their data. MI-Writer was available to students on school computers after they logged in using their own unique identifiers. Each student was given the opportunity to work on the writing exercise over multiple computer sessions.

A summary of the daily activities of each student was shared with the teacher and the student.

The researchers set up a total of eight writing patterns and recorded the successful identification of these patterns by MI-Writer. Patterns were invoked successfully when their conditional parts were observed in learners’ interactions. Two of these eight writing patterns were also associated with ‘mixed-initiative patterns’ that had the capability to proactively offer feedback to learners. For example, the writing pattern

\(<\text{pattern-id 110}>\Rightarrow<\text{sentence-id s}>\) and

\(<\text{student-id i}>\) and

\(<\text{greater-than-number-of-words 8}>\) and
was associated with the following mixed-initiative pattern:

\[
\langle \text{pattern-910} \rangle \rightarrow \langle \text{feedback-template-5-frequency show-once} \rangle \text{ and }
\langle \text{feedback-template-5-message “Do you need help with this sentence?”} \rangle
\]
\[
\langle \text{pattern-id 110} \rangle \text{ and }
\langle \text{sentence-id 1} \rangle \text{ and }
\langle \text{feedback-template-5-learner-reaction show-note-template} \rangle
\]

This mixed-initiative pattern ensured that the student received a short feedback message upon encountering the writing pattern (id 110) and then showed a template where the student could write a note to the teacher. Similarly, additional constraints can be added to the mixed-initiative feedback template. This mixed-initiative feedback is based on the feedback model proposed by Hattie and Timperley (2007).

Results and Discussion

The number of sessions students worked on their document varied from one to 10 in an eight-week period. The number of observable significant changes (such as word creation, word correction, change in punctuation, sentence modification, and so on) in each session varied from 4 to 3959. Table 1 presents the number of significant changes per session for the 15 participants and clearly shows that students had different approaches to working on the writing exercise. For instance, Participant 1 worked on the exercise just once and made 696 significant changes to the document, while Participant 2 worked on the exercise in 10 different sessions and made significant changes to the draft in each session.

MI-Writer was able to identify spelling mistakes made by students as they typed, as well as any attempts to correct the mistakes. In addition, MI-Writer showed that all participants revised their initial sentences. MI-Writer provides the opportunity for fine-grained analysis of what student-writers are doing when they write; the results of such an analysis can, in turn, be used as feedback for the teacher and for the learner. For example, information about the various incarnations of a sentence could offer teachers insight into why students change their sentence structures.

The current preliminary study provides evidence that students are willing to engage with MI-Writer and even like it. However, teachers also expressed concerns about the fit of MI-Writer feedback with the school’s curricular goals. Since the nature of our study was preliminary, the data show only the power of the mixed-initiative data tracing mechanism of MI-Writer, not its effectiveness in assisting students who participated in the study to write more effectively. Now that we have demonstrated the feasibility of using MI-Writer, we hope to investigate its impact on writing in future studies.
Table 1: Student Interactions with MI-Writer

<table>
<thead>
<tr>
<th>Participant</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>696</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1131</td>
<td>818</td>
<td>89</td>
<td>944</td>
<td>1154</td>
<td>455</td>
<td>48</td>
<td>403</td>
<td>734</td>
<td>1531</td>
</tr>
<tr>
<td>3</td>
<td>725</td>
<td>6</td>
<td>57</td>
<td>38</td>
<td>413</td>
<td>34</td>
<td>660</td>
<td>6</td>
<td>1407</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1631</td>
<td>153</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1953</td>
<td>1128</td>
<td>409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2901</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3959</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1493</td>
<td>116</td>
<td>445</td>
<td>69</td>
<td>497</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2153</td>
<td>303</td>
<td>18</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3797</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>404</td>
<td>115</td>
<td>6</td>
<td>2</td>
<td>103</td>
<td>748</td>
<td>259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1697</td>
<td>692</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1847</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

The two preliminary studies reported here demonstrate ways of recording traces of problem solving and writing processes that may be useful in additional writing research. They show that the technology behind these two platforms is practical and can be integrated with classroom instructional methods. Importantly, they show that students can learn to write as and when the situation presents itself, indoors or outdoors, ubiquitously, rather than confining students to learn to write only in classroom situations. In this respect, mobile devices do provide established communication channels between mobile learners, the instructor, and the ubiquitous writing system. Students can virtually experience the topics, events, or stories before they ground the experience with real-world objects. Furthermore, the treasure hunting activities can assist in collecting thematic items and in recording landmarks that can significantly influence the learners as they write the essay or journal or article.

Augmenting these mobile communication channels with mixed-initiative protocols is a feasible option, and would create the possibility of providing real-time writing process feedback to student writers in mobile learning contexts. That is, students do not have to wait for typical feedback to arrive after the instructor has manually looked at the intermediate or final submission corresponding to the writing exercises. We are currently exploring the possibility of allowing students to receive authenticated, realtime, context-specific feedback.
from the mixed-initiative writing system. Such an ever-present feedback mechanism not only has the potential to reduce the workload of the instructor but also improve students’ learning efficiency. We perceive mixed-initiative as a ubiquitous feedback and competency assessment mechanism, quite analogous to someone watching over the shoulder of each student, as and when they engage in a writing task, at a pace of their choice. Such a ubiquitous writing platform could not only measure individual competencies in writing, but also identify writing competency gaps that can be addressed proactively.

MI-Writer allows learners to plan, to translate, to review, to read, to evaluate, and to revise. Learners plan using the outline interface; they translate these outlines into parts of the essay; they review their writing process in terms of grammar and style (e.g., transactional writing); they not only read summaries of their own progress but also that of their peers; they evaluate each other’s work using a peer review mechanism; and finally, they revise content using system-generated feedback as well as peer feedback.

At this point in time, MI-Writer has the capability to track writing progressions of an individual learner or a group of learners in terms of audience/purpose, content ideas, vocabulary, and sentence structures. The quantitative data, when interpreted through incremental language parsers, result in determining whether the essay closely corresponds with the purpose, whether the ideas expressed in the outlining interface have been fully explored in the essay, whether the vocabulary prescribed by the teacher have mostly been used by the class of students, or whether the quality and types of sentence structures are to the expectations of the teacher. For instance, the teacher will have a trace of how long it took for the student to complete a sentence, how many times the student changed key phrases in the sentence, whether the changes were repeated across multiple sentences, and whether each sentence was constructed in an incremental fashion adhering to the advocated methods of sentence construction in the class.

The treasure hunting tool mostly allows learners to translate, to review, and to read their content. As a translation exercise, learners can observe and take note of a rich set of real-world artefacts and associate them with the underlying stories, thus establishing the contexts for writing; they review their own contributions and annotate the findings using the mobile interfaces; and finally, they read each other’s contributions by sharing them among peers.

As consumers become more and more “wired,” the need for schools and universities to ensure that learners are highly literate increases (Stein, 2000). Indeed, most learners can expect to enter a career that involves computer- or mobile device-mediated written communication. A situated, mixed-initiative mobile learning model has implications for a range of learning design possibilities for the 21st Century student writer.

References

Key Terms & Definitions

Mixed-Initiative System: A system that gathers data on learner interactions with the system and uses this data to make inferences and offer feedback to the learner.

Planning: Writing process involving setting goals, generating ideas, and organizing ideas to achieve the goals.

Reviewing: Writing process involving (re)reading the text-so-far, evaluating it, and making revisions.

Translating: Writing process during which ideas stored internally or externally via notes, concept maps, etc. are transformed into “visible language” (p. 373; Flower & Hayes, 1981).

About the Authors

Dr. Vive Kumar

Vive (K) launched his professional career as a scientist at the Centre for Development of Advanced Computing in Mumbai, India. During this tenure, he won a fellowship of the United Nations to work with Prof Alan Lesgold at the Learning Research and Development Centre (LRDC), University of Pittsburgh, USA. His research on ‘model tracing’ at LRDC won him a full PhD scholarship at the University of Saskatchewan, Saskatoon, Canada, where he worked with Professors Gordon McCalla and Jim Greer. He graduated his PhD as
the Best Graduating Student of 2001 and launched his academic career with Simon Fraser University as Assistant Professor. In 2006, he consulted for the Asian Development Bank and worked with the Open University of Sri Lanka in Colombo to develop an online learning infrastructure and a masters programme in educational technology. He then moved to New Zealand to take up an academic position with Massey University in Wellington. In 2008, he came back to Canada as an Associate Professor in the School of Computing and Information Systems at Athabasca University to continue his beloved research in online learning technologies. Vive(k)’s research centers around Technology-Enhanced Teaching, Learning, and Research that extends to mixed-initiative human-computer interaction and causal modelling.

Dr. Maiga Chang
Maiga Chang received his Ph.D from the Dept. of Electronic Engineering from the Chung-Yuan Christian University in 2002. He is Assistant Professor in the School of Computing Information and Systems, Athabasca University (AU), Athabasca, Alberta, Canada. His researches mainly focus on mobile learning and ubiquitous learning, museum e-learning, game-based learning, educational robots, learning behavior analysis, data mining, intelligent agent technology, computational intelligence in e-learning, and mobile healthcare. He serves several peer-reviewed journals, including AU Press and Springer’s Transaction on Edutainment, as editorial board members. He has participated in 126 international conferences/workshops as a Program Committee Member and has (co-)authored more than 128 book chapters, journal and international conference papers. In September 2004, he received the 2004 Young Researcher Award in Advanced Learning Technologies from the IEEE Technical Committee on Learning Technology (IEEE TCLT). He is a valued IEEE member for fourteen years and also a member of ACM, AAAI, INNS, and Phi Tau Phi Scholastic Honor Society.

Dr. Tracey Leacock
Tracey L. Leacock, PhD is an Adjunct Professor in the Faculty of Education and in the School of Interactive Arts & Technology at Simon Fraser University. She is also an Associate Member of the Cognitive Science Program. She completed her PhD in cognitive psychology at Princeton University, specializing in visual perception. As a Project Management Professional (PMP), she has led the development of online and blended courseware for a wide range of academic and workplace training courses. Her current research focuses on the decisions learners make about how and when to use educational technologies to aid in their learning and on academic writing at the post-secondary level.
Editors
Mary Kalantzis, University of Illinois, Urbana-Champaign, USA.
Bill Cope, University of Illinois, Urbana-Champaign, USA.

Editorial Advisory Board
Michel Bauwens, Peer-to-Peer Alternatives, Thailand
Nick Burbules, University of Illinois, Urbana-Champaign, USA
Bill Cope, University of Illinois, Urbana-Champaign, USA
Mary Kalantzis, University of Illinois, Urbana-Champaign, USA
Faye L. Lesht, University of Illinois, Urbana-Champaign, USA
Robert E. McGrath, University of Illinois, Urbana-Champaign, USA
Michael Peters, University of Illinois, Urbana-Champaign, USA

Please visit the Journal website at http://www.ULJournal.com for further information about the Journal or to subscribe.
The Ubiquitous Learning Community
This knowledge community is brought together around a common concern for new technologies in learning and an interest to explore new anywhere, anytime, anyhow possibilities for learning. The community interacts through an innovative, annual face-to-face conference, as well as year-round virtual relationships in a weblog, peer reviewed journal and book imprint – exploring the new digital media. Members of this knowledge community include academics, teachers, technology practitioners & research students.

Conference
Members of the Ubiquitous Learning Community meet at the Ubiquitous Learning: An International Conference held annually in different locations around the world. This Conference has evolved from the e-Learning Symposia held in Melbourne, Australia in 2006, 2007 and 2008 connected with the International Conference on Learning. It is also connected to the Ubiquitous Learning Institute in the College of Education at the University of Illinois, Urbana-Champaign, USA in 2009 Conference was held at Northeastern University, Boston, USA. The 2010 Conference will be held at University of British Columbia, Vancouver, Canada and the 2011 Conference will be held at University of California, Berkeley, California.

The Ubiquitous Learning Conference investigates the uses of technologies in learning, including devices with sophisticated computing and networking capacities which are now pervasively part of our everyday lives—from laptops to mobile phones, games, digital music players, personal digital assistants and cameras. The Conference explores the possibilities of new forms of learning using these devices not only in the classroom, but in a wider range of places and times than was conventionally the case for education.

Our community members and first time attendees come from all corners of the globe. Intellectually, our interests span the breath of the field of education. The Conference is a site of critical reflection, both by leaders in the field and emerging academics and teachers. Those unable to attend the Conference may opt for virtual participation in which community members may either submit a video and/or slide presentation with voice-over, or simply submit a paper for peer review and possible publication in the Journal.

Online presentations can be viewed on YouTube.

Publishing
The Ubiquitous Learning Community enables members to publish through three media. First, by participating in the Ubiquitous Learning Conference, community members can enter a world of journal publication unlike the traditional academic publishing forums – a result of the responsive, non-hierarchical and constructive nature of the peer review process. Ubiquitous Learning: An International Journal provides a framework for double-blind peer review, enabling authors to publish into an academic journal of the highest standard.

The second publication medium is through a book imprint Ubi-Learn, publishing cutting edge books in print and electronic formats. Publication proposals and manuscript submissions are welcome.

The third major publishing medium is our news blog, constantly publishing short news updates from the Ubiquitous Learning Community, as well as major developments in the emerging field of ubiquitous learning. You can also join this conversation at Facebook and Twitter or subscribe to our email Newsletter.
<table>
<thead>
<tr>
<th>AGING</th>
<th>ARTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website: http://AgingAndSociety.com/journal/</td>
<td>Website: www.Arts-Journal.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOOK</th>
<th>CLIMATE CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The International Journal of the Book</td>
<td>The International Journal of Climate Change: Impacts and Responses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSTRUCTED ENVIRONMENT</th>
<th>DESIGN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DIVERSITY</th>
<th>FOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>The International Journal of Diversity in Organizations, Communities and Nations</td>
<td>Food Studies: An Interdisciplinary Journal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GLOBAL STUDIES</th>
<th>HEALTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Global Studies Journal</td>
<td>The International Journal of Health, Wellness and Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUMANITIES</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The International Journal of the Humanities</td>
<td>The International Journal of the Image</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEARNING</th>
<th>MANAGEMENT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MUSEUM</th>
<th>RELIGION AND SPIRITUALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>The International Journal of the Inclusive Museum</td>
<td>The International Journal of Religion and Spirituality in Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCIENCE IN SOCIETY</th>
<th>SOCIAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The International Journal of Science in Society</td>
<td>The International Journal of Interdisciplinary Social Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPACES AND FLOWS</th>
<th>SPORT AND SOCIETY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website: www.SpacesJournal.com</td>
<td>Website: www.sportandsociety.com/journal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUSTAINABILITY</th>
<th>TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>The International Journal of Environmental, Cultural, Economic and Social Sustainability</td>
<td>The International Journal of Technology, Knowledge and Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UBIQUITOUS LEARNING</th>
<th>UNIVERSITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website: www.ubi-learn.com/journal/</td>
<td>Website: www.Universities-Journal.com</td>
</tr>
</tbody>
</table>

For subscription information please contact subscriptions@commongroundpublishing.com