Unsupervised Knowledge Navigation: Reconstructing the Hypermedia Structure of Instructional Materials on World Wide Web

Chang-Kai Hsu, Jyh-Cheng Chang, Maiga Chang and Jia-Sheng Heh
1Dept. of Information and Computer Engineering, Chung Yuan Christian University, Taiwan
2Program Office of National Science and Technology Program for e-Learning in Taiwan
ken@mcsl.ice.cycu.edu.tw, eoda@mcsl.ice.cycu.edu.tw, maiga@ms2.hinet.net,
jsheh@ice.cycu.edu.tw

Abstract: There are many different terms when a learner surf on the web. When a learner is reading an instructional material, he/she may not understand the meaning of specific term/keyword in a moment easily. At this time, the learner will need to find out the definitions or references about the keyword. However, unfortunately, the learner will not be able to find out what he/she is looking for in the most of time. It is because of the instruction designers of the learning materials who had never thought that would be a problem for learners. Therefore, it will be excellent, if the associated documents with the keyword which is the learner looking for could be retrieved automatically, and furthermore, the original document structure could be reconstructed to a more suitable for learning and reading in real-time. In this paper, the graph theorem and the data mining technique are applying to produce an association lattice of keywords and design a searching algorithm of reconstructing the necessary instructional materials on the website automatically.

Keywords: Association rule, Keywords, Lattice, e-Learning, Instructional materials, Hypermedia, WWW.

1 Introduction
Internet-Based Education is "using the network to transmit, pick and fetch the learning information and contents", including the information scientific, technology, and many kinds of teaching contents [3]. Rosenberg (2001) thoughts that there should be three characteristics when teaching via network [7]: network teaching is networked, can upgrade in time, deposit and withdraw, spread and share the content of courses and information; network teaching uses the standard network technologies, such as TCP/IP, HTML, to teach through the computer environment; and, moreover, the network is not only convey the instructional contents, but also include examination of the learning effects [1][2][6].

By applying data mining techniques suchlike association rules, the partial of instructional materials and/or other structured documents in the hypermedia environment could be seen as transactions in commerce. Moreover, those keywords exist in the materials and the documents could be also used as the frequent (purchasing or buying) items of customers (documents and/or learners). With these assumptions, this paper tries to present an unsupervised reconstruction mechanism in order to recover the hypermedia structure of instructional materials and use the discovered results to navigate students in learning.

Section 2 defines the document structure and knowledge navigation in the hypermedia environment. In Section 3, Association Rules Methodology (ARM) and documents' keywords are integrating with the lattice theory in order to analyze the association lattice. Two algorithms for maintaining association lattice of keywords are described by Section 4. Experiment system then is implemented for testify the association lattice approach in Section 5. Section 6 makes a simple conclusion and discusses possible future works.

2 Hypermedia structure formulation
As we know, no matter whether a document is, such as a whole book, an article, a paragraph, a section, a chapter, and even one single webpage, which can be seen as a kind of instructional materials. Keywords are some pre-selected terms that can be used to refer to a document and/or an instructional material. In general, most of keywords are nouns.

Keywords are utilized to index and summarize a document's content. For a given set of keywords, not all of these terms are equally useful for representing the document's contents. Therefore, when keywords are used in describing a document's contents, each keyword will have various relationships with these contents obviously. These relationships shall be able to express as "association rules" which are generated via some kinds of data mining techniques.

An association rule can be represented by $X \Rightarrow Y$, where X means the cause statement and Y means the
result statement. With the association rules, users will be able to find some patterns which might hide inside a large mount of data and would be interested by them. For example, a vendor may want to figure out what kinds of item combinations will have good sell. The goal of using such kind of data mining techniques is to automate the process of finding relevant patterns and trends [4]. Since the Apriori [9] algorithm is the most well-known association rule algorithm and has been used in most of commercial products, this paper develops the experiment system based on Apriori algorithm.

In general, most of the association mining works have concentrated on the task of discovering the frequent itemsets. There is only very little attentions has paid in extracting rules, and it is so-called the rule generation. Some researches tried to form rules to cover all of data [5]. Other works addressed the problems when researchers were trying to figure out the association rules which would be interested [8][10][11].

First of all, several definitions are needed to describe. A paragraph in a document is a transaction, and each keyword is an association property which is used in representing the transaction. Let \(t \) be the number of keywords and \(k_i \) be a generic index. Therefore, the keyword set is \(K = \{k_1,k_2,...,k_t\} \).

Nelson (1995) suggested an idea about associating hypertext in a multiple and flexible way for any hypermedia [12]. Network structure is one possible metaphor to represent the information of nodes and links in a hypermedia environment. No matter a structured document is hypertext or not, which can be transformed into the independent hierarchical (no-flat) structures, is so-called the document structure, \(S = \{s_i\} \). The elements of the document structure include chapters, sections, paragraphs, and sentences.

Example 1. Figure 1 shows an example of hypermedia environment. Here, the document structure \(s_i \) (e.g., article) has a header associated with the keyword \(k_i \) and a paragraph \(s_{1i} \). The structure \(s_{1i} \) also has another header associated with the keyword \(k_2 \), one sentence \(s_{1ii} \), and one hyperlink to the document \(s_2 \). The sentence \(s_{1ii} \) contains two keywords, they are \(k_3 \) and \(k_4 \). The document \(s_2 \) contains another two keywords \(k_5 \) and \(k_6 \).

In the most of e-Learning systems, instructional materials (or courseware) designers often focus on the content design, such as pictures, animation objects, video games, and online-test. However, instruction designers may not pay attentions in considering the learners' possible traversal paths. Different traversal paths (or learning paths) may let learners feel either comfortable or confused, especially when the instruction materials are designed for a hypermedia environment such like WWW.

Example 2. When learner reading a courseware of Java language. Taking the Sun's Java online lectures for example (http://java.sun.com/docs/books/tutorial/java/index.html). This courseware was writing about the concepts of object-oriented programming. In this document, there is a statement - "...A software object implements its behavior with methods...". When a learner read this statement, he/she may not understand the meaning of the keyword - "methods" clearly. Therefore, the learner will need more references for "methods". However, unfortunately, in the most of time, the learner will not find out. It is because of the editors of instructional materials never think that will be a question mark in the learners' mind. Therefore, if the dependent documents that are associated with the keyword - "methods" could be retrieved automatically and the original document structure could be reconstructed to more suitable for learning and reading just like Fig. 2 shows, that will be perfect.

Fig. 1. \(s_1 \) and \(s_2 \) are structured documents.

Fig. 2. Re-construct the original webpage and provide related webpage's link automatically.
In order to reach the objective that is mentioned above, there are two major problems that will be discussed and analyzed in this paper.

(a). Association Lattice of Keywords: given a set of keywords, how to construct an association lattice from these keywords by retrieving the contents of the original hypermedia instructional materials?

(b). Reconstructing Hypermedia Structure: after the association lattice of keywords worked out, how to reconstruct two or more hypermedia structured documents?

3. Association Lattice of Keywords

The task of mining associations between keywords can be stated as follows: Let \(K = \{k_1, k_2, ..., k_m\} \) be a set of keywords, and let \(S = \{S_1, S_2, ..., S_n\} \) be a set of structure identifiers in hypermedia documents. The input database in a binary relation \(\delta \subseteq K \times S \). If a keyword \(k_i \) is found in a structure \(S_j \), we write it as \((k_i, S_j) \) or alternately as \(k_i \delta S_j \). In typical, a hypermedia instructional material contains lots of document structures, where each document structure contains a set of keywords.

The **support** of the keyword set \(K \) is denoted as \(\partial(K) \). The value of \(\partial(K) \) is the number of document structures in which there is a same keyword exists. A keyword set will be **frequent** if its support value is higher than the expected threshold, \(\partial(K) \geq \text{minsup} \), where \(\text{minsup} \) is a user-specified **minimum support threshold**.

Example 3.

Consider the hypermedia instructional materials shown in Table 1. (Table 1 will be used as a running example in the whole paper). The keywords in the keyword set \(K = \{O, C, M, I, V\} \) are "Object", "Class", "Method", "Inheritance", "Variable". Moreover, the document structure set is \(S = \{S_1, S_2, S_3, S_4, S_5, S_6\} \). In order to simplify and make it more readable, in the following examples, the \(S_2 \) = \(C \delta S_2, M \delta S_2, V \delta S_2 \) will be replaced by \(\text{CMV} \) which means the document structure \(S_2 \) contains a keyword set \(C, M, V \). Similarly, a document structure set \(\{1, 3, 5\} \) will also simply write as 135 for the same reason.

<table>
<thead>
<tr>
<th>(S_i)</th>
<th>Keywords in (S_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(O)</td>
</tr>
<tr>
<td>2</td>
<td>(C)</td>
</tr>
<tr>
<td>3</td>
<td>(I)</td>
</tr>
<tr>
<td>4</td>
<td>(V)</td>
</tr>
<tr>
<td>5</td>
<td>(O)</td>
</tr>
<tr>
<td>6</td>
<td>(C)</td>
</tr>
</tbody>
</table>

Table 1. Five keywords in six document structures.

<table>
<thead>
<tr>
<th>Frequent keyword set (\text{minsup} \geq 50%)</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>100%</td>
</tr>
<tr>
<td>(V, CV)</td>
<td>83%</td>
</tr>
<tr>
<td>(O, M, I, OC, OV, CM, CI, OCV)</td>
<td>67%</td>
</tr>
<tr>
<td>(OI, MV, IV, OCI, OJV, CMV, CIV, OCIV)</td>
<td>50%</td>
</tr>
</tbody>
</table>

Table 2. Frequent keyword sets in the structured documents with \(minsup=50\% \).

A **confident association rule** is denoted as \(\{k_1, k_2, ..., k_n\} \rightarrow k_m \), which means that if all of the keywords \(k_1, k_2, ..., k_n \) can be found out in the specific document's structure, then there should be a good chance to find the keyword \(k_m \) out in the same structure, too. The acceptance ratio (probability) for such kind of association rules is called the **confidence** of the rule, and the probability is denoted by \(p \). The probability \(p \) can be calculated by \(p = \partial(k_1, k_2, ..., k_n \cup k_m) / \partial(k_1, k_2, ..., k_n) \). In practical, researchers only care those association rules with high confidence, that is \(p \geq \text{minconf} \).

Example 4.

One extracted rule for the Java instructional materials on the Sun website is \(\text{subclass} \rightarrow \text{superclass} \rightarrow \text{inheritance} \). This rule means that the document structure in an instructional material (webpage) mentions the "subclass" and "superclass" will also mentions the "inheritance". And this rule's confidence will be 0.85 (85%).

As **Apriori** uses the **frequent itemset** to generate rules, a frequent itemset is an itemset whose occurrence ratio is higher than the threshold. An itemset can be seen as a keyword set \((K_i) \) in the instructional material. Beside the itemset, the **transaction set** in **Apriori** can be also represented as the document structure \((S) \). By using **Apriori** a association lattice of keywords (based on Example 4) can be built more easily as Fig. 4 shown.
In this case there are five keywords (items), \(\{O, C, M, I, V\} \). The line in the lattice represents the relation between two keyword-sets (itemsets). The frequent itemset property in Apriori mentioned that any itemset must be frequent if its parent itemset is frequent. Figure 5 shows the nonempty subsets of \(OCV \) are \(\{OC, OV, CV, O, C, V\} \). Therefore, according to the frequent itemset property, if \(OCV \) is frequent, then all of the subsets should be frequent, too.

After an association lattice of keywords was constructed, the next step is generating confident rules. The step can be divided into three stages:

1. To choose the frequent itemset with a minimal support threshold. For example, when the \(\text{minsup} = 50\% \):
 (1) \(C \) with support 100%;
 (2) \(V, CV \) with support 83%;

2. To find out all the possible rules: (according to the example above)
 (1) \(O \rightarrow CV \);
 (2) \(OC \rightarrow V \);
 (3) \(C \rightarrow OV \);
 (4) \(OV \rightarrow C \);
 (5) \(V \rightarrow OC \);
 (6) \(CV \rightarrow O \).

3. To search the confident association rules with a minimal confidence threshold. For example, when the \(\text{minconf} = 100\% \):
 (1) \(O \xrightarrow{1.0} CV \);
 (2) \(OC \xrightarrow{1.0} V \);
 (3) \(OV \xrightarrow{1.0} C \).

By using the three stages above, the association lattice of keywords can be retrieved automatically. For example, if a learner wants to study about the topics – \(\{O, C, V\} \), the relevant association lattice of keywords \(OCV \) can be discovered as shown in Fig. 6.

4 Algorithm Description and Design

As mentioned in previous section, the confident association rule can be used to present the more strong relation of each keyword. In order to achieve the results showed by Fig. 5 and Fig. 6, a graph-based algorithm, Association Lattice Search (ALS), is needed to design.

Before designing the ALS algorithm, the graph structure of ALS-graph is defined as:

1. It is a complete graph. A complete graph with \(n \) vertices (denoted \(K_n \)) in which each vertex is connected to each of the others. Fig. 7 represents the first five complete graphs.
2. Each vertex denoted the specific keyword, the edge between two vertices involves a weight \((w)\), where the weight value indicates the number of transactions which contain any of its two connected keywords, also can be seen as the support \(\sigma()\).

3. An ALS-graph is a connected, weighted graph \(K_n = (V,E)\), where \(|V| = n\), \(E = V \times V\) and the weight of edge between vertex \(i\) and vertex \(j\) is denoted by \(w_{ij}\).

4. Sum of weights belongs to vertex \(v_i\) is denoted by \(sw(v_i) = \sum w_{ik}\). This value means the total support of all transactions in the original transaction set. In the other word, we can take the value as the importance of a keyword in document. For example, in Fig.8, a vertex \(v_3\) has two edges with weight value 2 and 3. therefore the sum of weights for \(v_3\) is \(sw(v_3) = 2 + 3 = 5\). □

![Fig. 8 Sum of weight values of a vertex.](image)

Based on these definitions above, the following two-phase ALS construction algorithm is designed. The \textit{ALS-graph generation phase} calculates weights for keyword sets. The \textit{association lattice construction phase} constructs an association lattice of keywords with frequent keyword set, and at the same time generates association rules for those frequent keyword set.

Algorithm 1. ALS-graph generation phase.

Input: A transaction database, DB.

Output: An ALS-graph.

Take the transactions listed in Table 1 for example, the steps of Algorithm 1 are:

Step 1. Scanning the transaction database DB once, Collect the set of keywords and their supports. Hence, a keyword set \(\{O,C,M,I,V\}\) has been retrieved.

Step 2. Constructing a complete graph \(K_n = (V,E)\), where \(n=5\), \(V = \{O,C,M,I,V\}\) and \(E = V \times V\), as shown in Fig. 9.

![Fig. 9 The initial ALS-graph is \(K_5\).](image)

Step 3. Generating candidate associate terms from the first transaction and count the support of them. The relation of those candidate association terms are: \(\{OCIV\} \Rightarrow \{OC, OC, OV, CV, IV\}\). Therefore, the weights of each edge in the ALS-graph can be labeled as \(w_{OC} = 1, w_{OL} = 1, w_{OV} = 1, w_{CV} = 1, w_{IV} = 1\).

Step 4. Repeating step 3 for scanning all transactions in DB. Finally, the following result which is illustrated in the Fig. 10(a) to Fig. 10(f) can be gotten.

Step 5. Calculating sum of weights, \(sw(v_i)\), for each vertex in the ALS-graph \(K_5\). For example, \(sw(v_1) = 4 + 1 + 0 + 4 + 4 = 17\), \(sw(v_2) = 13\), \(sw(v_3) = 15\), \(sw(v_4) = 11\), and \(sw(v_5) = 12\). Those sum values were marked in Fig. 11 with underline. □

![Fig. 10 Steps of generating ALS-graph.](image)

![Fig. 11 The final result ALS-graph.](image)

After running Algorithm 1, an \textit{ALS-graph} was generated. In the second phase, the algorithm of
constructing association lattice of keywords is designed below.

Algorithm 2. Association lattice construction phase.

Input: An ALS-graph constructed based on Algorithm 1, transaction database (DB), and a minimum support threshold, minsup

Output: The association lattice of keywords.

Step 1. Finding the maximum \(sw(v_i) \) and let that vertex be the root of lattice. For example, by sorting \(sw(v_i) \) from Fig. 11, the comparison result is:

\[sw(v_C) > sw(v_F) > sw(v_O) > sw(v_I) > sw(v_M) . \]

Step 2. Let \(X = \{v_i\}, (P(X), \preceq) \) is satisfied partial ordering, \((P(X), \preceq) \) is a lattice denoted by \(L \). Add the root vertex \(v_C \) into \(L \) and markup its degree as \(Lv_1 \).

Step 3. By using BFS (breadth-first search), started from \(v_C \), sort every weights of its adjacent edges. \(w_{cv} = w_{CO} = w_{CM} \). Hence, \(v_C \) then is added into \(L \) and markup its degree as \(Lv_2 \).

Repeats step 3, until every vertex that is adjacency to \(v_C \) have been added into \(L \). Then go back to step 1 to find the second large of \(sw(\cdot) \). After these process steps are completed, the finally association lattice will be constructed. Fig. 12 shows the construction steps of Algorithm 2.

Algorithm 1 (ALS-graph generation) can build an ALS-graph online immediately. In the association lattice construction phase, that is Algorithm 2, the graph theory's algorithm - "breadth first search (BFS)" is used for solving the hierarchical visiting problem. As the Fig. 12 shows, the weight on the edge between two vertices on \(Lv.1 \) and \(Lv.2 \) is weight 5; weights on \(Lv.2 \) to \(Lv.3 \) is 4; and, weights on \(Lv.3 \) to \(Lv.4 \) is 3. By using this kind of search algorithm, the association lattice of keywords can be constructed quickly. Therefore, the association lattice of keywords can be applied to reconstruct the relationship according to the document's content.

5 Experiment Framework

This paper develops an experiment system with the association lattice of keywords and tests it by using the instructional materials of Java language on the Sun's website. There are five keywords ("Object", "Class", "Method", "Inheritance", "Variable") and six document structures. The contents of original document structures are shown in Table 3.

- \(S_1 \) Software objects are modeled after real-world objects in that they too have state and behavior. A software object maintains its state in one or more variables. Classes near the bottom of the hierarchy provide more specialized behavior. A subclass derives from another class. For example, a subclass cannot access a private member inherited from its superclass.

- \(S_2 \) A class can also declare class methods. Methods and variables are inherited down through the levels. In general, the farther down in the hierarchy a class appears, the more specialized its behavior. In addition to instance variables, classes can define class variables.

- \(S_3 \) Object-oriented programming. Subclasses can also override inherited methods and provide specialized implementations for those methods. You are not limited to just one layer of inheritance. The inheritance tree, or class hierarchy, can be as deep as needed. A class variable contains information that is shared by all instances of the class. In such situations, you can define a class variable that contains the number of gears. All instances share this variable.
These objects are created when the user launches the application. The application's main method creates an object to represent the entire application, and that object creates others to represent the window, label, and custom component. You can invoke a class method directly from the class, whereas you must invoke instance methods on a particular instance. If one object changes the variable, it changes for all other objects of that type.

Because the object that represents the spot on the screen is very simple, let's look at its code. The Spot class declares three instance variables: size contains the spot's radius, x contains the spot's current horizontal location, and y contains the spot's current vertical location. It also declares two methods and a constructor—a subroutine used to initialize new objects created from the class. The inheritance tree, or class hierarchy, can be as deep as needed.

Method: A function defined in a class. See also instance method, class method. Unless specified otherwise, a method is not static. Methods are inherited down through the levels.

Table 3. Contents of hypermedia instructional materials with specific keywords.

After parsing the text of those documents, the keyword set can be derived as mentioned in Table 1. The relations of keyword set can be presented by the association lattice as shown in Fig. 13.

Base on these association rules, when a learner is reading S_3 in which there are "Inheritance" and "Variable", the system can advise him to read another document in which the "Object" is included. For example, S_4 is a document which is talking about the concept "Object".

To realize the mechanism proposed in this paper, an internet-based learning system called Knowledge Enhance Network (KEN) is implemented as shown in Fig. 14. Fig. 15 shows the operational flow of analyzing document structures and keywords, constructing the association lattice of keywords, and reconstructing the hypermedia instructional materials automatically.

Fig. 14. Shap-shot of KEN.

Choosing the topic — "What is Class?", and feed it into KEN as shown in Fig. 16(a). By click the "Re-construct" button, a hyperlink will automatically add on the document, see the Fig. 16(b). If a learner wants to see more relevant documents, then he/she can just click the hyperlink and the relevant document that is associated with the source document will be displayed in the reading area, as shown in Fig. 16(c).

6 Conclusions
A web-based instructional material analyzing and reconstructing system is built in this paper according to the unsupervised reconstruction mechanism. By using association lattice of keywords, the necessary links between learning resources can be generated automatically for individual learner. Moreover, the most appropriate instructional materials (webpages) can also be able to find out for making suggestions to learners. However, the working procedure is still a little of complicated. The experiment framework was really created to prove that the reconstruction mechanism is workable and a reasonable association rules were also discovered. It is worth to note that the
experiment system is not only can be used for e-Learning system, but also will be available for any kind of web-based browsing environment. From now on, there are still several works can be done: the association lattice of keywords should be generated in real time; using minconf = 100% may lose some information; and, the keyword database may be able to construct automatically or semi-automatically.

Fig. 15. The operational flow.

Fig. 16. Example of reconstructing a hypermedia instructional material automatically.

References:

