Strategies for Generating Items based on the Difficulty Analysis of Problems

Rita Kuo
Dept. of Electronic Engineering, Chung-Yuan Christian University
No.22, Pu-Jen, Pu-chung Li, Chung-Li, 320, Taiwan

Pei-Ming Tien
Dept. of Visual Communication Design, Shu-Te University
No.59, Hengshan Rd., Yanchao Township, Kaohsiung County, 824, Taiwan

Maiga Chang
National Science & Technology Program for e-Learning in Taiwan
No.300, Jungda Rd, Chung-Li, 320, Taiwan

and

Jia-Sheng Heh
Dept. of Electronic Engineering, Chung-Yuan Christian University
No.22, Pu-Jen, Pu-chung Li, Chung-Li, 320, Taiwan

Abstract

This paper proposes a simple CAI system for iteratively generating items according to the previous problem solving operations from learners. The way to reach this goal needs difficulty table to determine the next item in the candidates which according to the value of difficulty dimensions in current item and the candidates. To select harder or easier item depends on correctness of each diagnosis feature. The way to analyze diagnosis features based on difficulty features from previous research. Using these analyses, in the end of this research constructs an item generating system with diagnosis features for learners practicing their problem solving skills by their own.

Keywords: Problem solving, Knowledge Map, Diagnosis, Difficulty of problems, Computer-assisted instruction systems

1. Introduction

Computer-Assisted Instruction Systems (CAI Systems) help teachers and learners with interactive programs while they are in the process of teaching and learning. [5] Teachers make use of CAI Systems as intermediary media to guide learners how to gain knowledge in various instructional models via multi-media, network etc. On the other hand, learners can pay attention to various types of teaching material and get knowledge through the interactive learning environment in CAI Systems. In CAI Systems, some researches focused on the problem solving techniques. These researches include how to transform a regular problem into computer, [11] how to build a problem solving environment etc. [1][2] Some CAI Systems also concentrate on the applications of Intelligent Agent. Several distance learning systems propose agents for managing system files [13], notifying grades in on-line quiz system [12] and so on.

The way to make CAI Systems more intelligent and powerful is knowledge structure. Knowledge Map is one of knowledge structures proposed in recent research. [6] It consists of two major parts, Concept Hierarchy and Concept Schema. Concept Hierarchy presents the hierarchical relationship among concepts. Concept Schema stores the remaining information, which integrates the definition, example, and other relations with associated concepts. In Figure 1, Concept Hierarchy is demonstrated in gray block with link among concepts and Concept Schema of each concept is demonstrated in the white block.

![Figure 1. Example of Knowledge Map in Physics](image)

This paper tries to build the architecture of CAI system which use Knowledge Map as its knowledge-base and have ability to train learners in problem solving operations. Section 2 describes some previous researches in item generating steps and difficulty definition. The method of how to select the next item with proper difficulty values would be analyzed in section
3. Section 4 designs diagnosis features to examine the correctness of problem solving operations from learners. An experiment system with example is demonstrated in section 5 and a section 6 gives a brief conclusion.

2. Problem Difficulties

In the previous research, the process of constructing problem use Knowledge Map as the knowledge provider. [7] Three major steps exist in the basic-problem constructing procedure, which are concept selection, unknown designation, and proposition construction, as shown in Figure 2. Concept selection sets the main concept of the basic problem. The next step, unknown designation, determines given attributes and unknown attributes in the problem. Proposition construction is the last step of the whole process, which builds sentences in natural language by using the result of setting-attributes from unknown designation. The entire procedure needs its knowledge base, Knowledge Map, and one specific problem metaphor, Problem Matrix.

![Figure 2. Process of constructing a basic problem](image)

Problem Matrix displays the real manipulating concepts and relationships which are using for solving the problem. Figure 3 shows a Problem Matrix example for the Free Fall problem in Physics. Two Physics laws ("Displacement = 0.5 * Acceleration * Time^2" and "Velocity = Acceleration * Time") present the relationships among four major concepts of Physics Quantity ("Displacement", "Time", "Velocity" and "Acceleration"). In the process of constructing a problem, unknown designation use Problem Matrix to know how to set unknown attributes and given attributes. For example of the Problem Matrix in Figure 3, unknown designation could choose "Displacement" as unknown attributes; "Time" and "Acceleration" as given attributes because learners could use the first manipulating relationship, "Displacement = 0.5 * Acceleration * Time^2", for solving the problem.

![Figure 3. Problem Matrix example](image)

For deciding the difficulty of a problem, the previous study defined eight difficulty features, which are shown in Table 1 and based the problem constructing steps and the structure of Knowledge Map. [8] To simplify the problem, the study only considers six difficulty features for affecting the previous two steps of problem construction. The step of concept selection determines the features of number of needed attributes, learning sequence, and concept depth. Number of unknown, number of given attribute, and number of elaborating attributes would be influenced by the next step, unknown setting. Difficulty features may not be easily understood what learners get wrong in solving problem process. For this purpose, [8] also translates difficulty features as difficulty dimensions, which are according to the four problem solving knowledge schema proposed by Marshall. [3] [6] [10] [14]

<table>
<thead>
<tr>
<th>Element</th>
<th>Difficulty Feature</th>
<th>Denotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Concepts</td>
<td>Number of Sub-Problems</td>
<td>θ_{sb}</td>
</tr>
<tr>
<td></td>
<td>Number of Needed Attributes</td>
<td>γ_{nwa}</td>
</tr>
<tr>
<td></td>
<td>Learning Sequence</td>
<td>γ_{nwa}</td>
</tr>
<tr>
<td></td>
<td>Concept Depth</td>
<td>γ_{cd}</td>
</tr>
<tr>
<td>Attributes Setting</td>
<td>Number of Unknown</td>
<td>γ_{un}</td>
</tr>
<tr>
<td></td>
<td>Number of Given Attributes</td>
<td>γ_{gva}</td>
</tr>
<tr>
<td></td>
<td>Number of Elaborating Attributes</td>
<td>γ_{eva}</td>
</tr>
<tr>
<td></td>
<td>Mathematical Complexity</td>
<td>γ_{mc}</td>
</tr>
</tbody>
</table>

Identification difficulty (γ_{id}) focuses on the concept discussed in the problem. Two difficulty features are related to this dimension, which are learning Sequence and concept Depth. In the next three difficulties, the calculation takes more notice of attributes in the problem. Elaboration difficulty (γ_{eb}) emphasizes the attributes needed to solve the problem. Number of needed attributes, number of given attributes, and number of elaborating attributes influence this difficulty dimension. Planning difficulty (γ_{pa}) calculation needs to know the relation of unknown attributes in the problem. Number of unknown and number of elaborating attributes impact this difficulty dimension. Number of unknown also decides the difficulty dimension of execution difficulty (γ_{ex}). To transform difficulty features to difficulty dimensions, the transform formulas are listed below: (θ_{k} indicates customized weight)

$$
\gamma_{id} = \theta_{k1} \cdot \gamma_{nwa} + \theta_{k2} \cdot \gamma_{cd}
$$

$$
\gamma_{eb} = \theta_{k3} \cdot \gamma_{gva} + \theta_{k4} \cdot \gamma_{eva} + \theta_{k5} \cdot \gamma_{eva}
$$

$$
\gamma_{pa} = \theta_{k6} \cdot \gamma_{nwa} + \theta_{k7} \cdot \gamma_{eva}
$$

$$
\gamma_{ex} = \theta_{k8} \cdot \gamma_{un}
$$

This paper enhances the architecture of problem constructing steps and makes the unknown designation more intelligent according to the answer from the learners. Two important issues exist in this research. How to decide next item from number of candidates according to multiple dimensions is one critical point of the architecture. Another
one is how to diagnose learners operation with various dimensions in the process of problem solving.

3. Item Determination

Item response theory is a method for considering the latent traits of the examinee. [9] This theory can be used to construct computerized adaptive testing system. Unidimensionality, local independence, and nonspeedness are three kinds of assumption that IRT must satisfies. [4] However, the definition of problem difficulty in this paper has four dimensions, inconsistent with the first assumption of IRT, and makes it not easy to decide the next item/problem. To solve this problem, this research proposes another way and use Difficulty Table to decide next item/problem.

Difficulty Table is a 2-dimension matrix shows the corresponding of each possible generated problem and difficulty dimensions. Figure 4 shows the concept of Difficulty Table, which denotes P_j as predicate j, γ_i as ith difficulty dimension, and d_{ji} as difficulty value of ith difficulty dimension in predicate j.

<table>
<thead>
<tr>
<th>P_1</th>
<th>d_{11}</th>
<th>d_{12}</th>
<th>d_{13}</th>
<th>d_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2</td>
<td>d_{21}</td>
<td>d_{22}</td>
<td>d_{23}</td>
<td>d_{24}</td>
</tr>
<tr>
<td>P_3</td>
<td>d_{31}</td>
<td>d_{32}</td>
<td>d_{33}</td>
<td>d_{34}</td>
</tr>
<tr>
<td>P_4</td>
<td>d_{41}</td>
<td>d_{42}</td>
<td>d_{43}</td>
<td>d_{44}</td>
</tr>
<tr>
<td>P_5</td>
<td>d_{51}</td>
<td>d_{52}</td>
<td>d_{53}</td>
<td>d_{54}</td>
</tr>
</tbody>
</table>

Figure 4. The concept of Difficulty Table

Before using Difficulty Table for determining the next item, the value of current difficulty dimensions (D_i^k) and the correctness of learner's operation (a_i) in each difficulty dimension are two important data which are listed below.

- $a_i = \begin{cases} +1 & \text{if learner's operation in } \gamma_i \text{ is correct} \\ -1 & \text{if learner's operation in } \gamma_i \text{ is incorrect} \end{cases}$

- D_i^k is the value of γ_i in kth item.

The idea of selecting next item can use Figure 5 to explain. If the current difficulty value of γ_i is D_i^k and five possible difficulty values ($d_{1i}, d_{2i}, d_{3i}, d_{4i}, d_{5i}$) could be chosen for the next item, the correctness of learner's operation (a_i) makes the step of unknown designation pick harder (d_{4i}, d_{5i}) or easier (d_{2i}, d_{3i}) one for the setting. The sorting list of selecting difficulty value should be $d_{4i} > d_{5i} > d_{2i} > d_{3i} > d_{1i}$ if $a_i = +1$; or $d_{2i} > d_{3i} > d_{4i} > d_{5i}$ if $a_i = -1$. To make the sorting list, a matrix S stores the priority of selecting value and the calculation of each item in S (which denoted as s_y) can be defined as below:

- $s_y = \text{strength}(a_i(d_{ji} - D_i^k)) + \begin{cases} +1 & \text{if } a_i(d_{ji} - D_i^k) > 0 \\ -1 & \text{if } a_i(d_{ji} - D_i^k) < 0 \end{cases}$

where $\text{strength}(a_i(d_{ji} - D_i^k)) = \begin{cases} 1 & \text{if } a_i(d_{ji} - D_i^k) > 0 \\ 0 & \text{if } a_i(d_{ji} - D_i^k) \leq 0 \end{cases}$

After the calculation of the priority matrix, the unknown selection step could find the predicate which have most high priority value in matrix S.

- count_j number of jth predicate that is the max difficulty value of each difficulty dimension

![Figure 5. Difficulty value selection example](image)

An example of previous definitions is shown in Figure 6. There are five candidate predicates of the problem and the difficulty of all predicates are shown in Figure 6(a). Assume that the current difficulty setting and the correctness of learner's problem solving operations are listed in Figure 6(b). Using the formula described above, table with double line frame in Figure 6(c) displays the priority calculation matrix, S, and find out predicate P_2 have high priority value at most. According to the calculating result in Figure 6(c), Figure 6(d) indicates the value of the next difficulty dimensions (D_i^{k+1}).

- $\gamma_1 = \gamma_0$ $\gamma_2 = \gamma_0$ $\gamma_3 = \gamma_0$ $\gamma_4 = \gamma_0$

<table>
<thead>
<tr>
<th>P_1</th>
<th>d_{11}</th>
<th>d_{12}</th>
<th>d_{13}</th>
<th>d_{14}</th>
<th>count_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2</td>
<td>d_{21}</td>
<td>d_{22}</td>
<td>d_{23}</td>
<td>d_{24}</td>
<td>count_j</td>
</tr>
<tr>
<td>P_3</td>
<td>d_{31}</td>
<td>d_{32}</td>
<td>d_{33}</td>
<td>d_{34}</td>
<td>count_j</td>
</tr>
<tr>
<td>P_4</td>
<td>d_{41}</td>
<td>d_{42}</td>
<td>d_{43}</td>
<td>d_{44}</td>
<td>count_j</td>
</tr>
<tr>
<td>P_5</td>
<td>d_{51}</td>
<td>d_{52}</td>
<td>d_{53}</td>
<td>d_{54}</td>
<td>count_j</td>
</tr>
</tbody>
</table>

![Figure 6. An example of difficulty decision making. (a) Difficulty Table; (b) The value of each difficulty dimension (D_i^k) and the correctness of learner's operation (a_i); (c) The priority calculation matrix S (table in double line frame) and the number of difficulty value which fits the consideration (count); (d) The value of difficulty dimensions (D_i^{k+1}) of the next predicate, P_3.](image)
4. Problem Solving Operation Diagnosis

Using the analysis in the previous section, this paper enhances the procedure of item generation as shown in Figure 7. Beside adding problem solving system for getting correct answer of the problem, the details in the former two steps, concept selection and unknown designation, have made some variation and store relative information for comparing problem solving operations from learners’. The enhancement of step unknown designation has been mentioned in section 3, and this section will describe other two essential mechanism of system design, conception-selecting strategy and problem-solving operation analysis.

Figure 7. Item Generation Procedure

To make the whole system more automatically, the enhanced part in Concept Selection should have the ability of traversing all concepts in a concept-set voluntarily. In the architecture of Knowledge Map, all concepts are organized as tree structure, and any sub-tree in the Knowledge Map can be treated as a concept-set. To automatically journey over each item in the sub-tree (concept-set), many tree-structure traversing algorithms described in textbook have been development. Depth-first search is chosen for our algorithm.

The analysis of problem solving operations from learners derives from the Difficulty Features mentioned in section 2. Extracting six difficulty features in use through [8], each of them corresponds to one Difficulty Dimension as shown in the left side of Table 2, which of the origin comes from the transformation between difficulty features and difficulty dimensions. To make it easier to use in problem solving operation diagnosis, this paper defines five diagnosis features (right part of Table 2) which are used to identify problem solving abilities of learners’.

Major concept, the first diagnosis features in Table 2, composes difficulty features of learning sequence and concept depth and influence difficulty dimensions of identification. In elaboration difficulty dimension, number of given attributes, elaborating attributes, and needed attributes are useful diagnosis features, but diagnosis features only use given attributes and elaborating attributes for analysis because of the hard detecting of needed attributes’ operation. Unknown attributes influence difficulty dimensions of planning and execution. It is referred to the diagnosis feature of answer, which are determined for diagnosing difficulty dimension of execution. An external diagnosis feature, problem solving path, is joined in for verifying the difficulty dimension of planning in the bottom of the table. These five diagnosis features will be transformed into user interface of the assistant system for deciding difficulty value of next item.

<table>
<thead>
<tr>
<th>Table 2. Analysis of problem solving operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty Features</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Learning Sequence</td>
</tr>
<tr>
<td>Concept Depth</td>
</tr>
<tr>
<td>Number of Given Attributes</td>
</tr>
<tr>
<td>Number of Elaborating Attributes</td>
</tr>
<tr>
<td>Number of Needed Attributes</td>
</tr>
<tr>
<td>Number of Unknown Attributes</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

For applying diagnosis of problem solving operations, this paper also designs dialogic interface for learners answering relative question, which can get their idea of how to solve this problem. To make the answer convergent, selection type of the question is one way proceed to create conversation. The way to generate proper sentence of question depends on the respective information of the problem. For this purpose, three essential structures, concept information, difficulty table, and problem matrix, gives diverse information in different steps.

Concept information records the concept of the entire test and the major concept of the current item. This information can be used to ask learners the diagnosis feature, major concept, of the problem. Difficulty table lists values of difficulty dimension including the current item and the possible predicates of the next item. The last data structure, problem matrix, stores many information of the problem, including given attributes and elaborating attributes which also parts of diagnosis features. Other information of the problem matrix, manipulating relation, can be considered as the diagnosis features of problem solving path. The last feature, problem answer, can not be gained from the problem directly but can be acquired from using problem solving system.

5. Enhanced Item Generating System

The new Item generating system (Figure 8), which based on the previous research in [8], integrates diagnosing problem solving operations in to the original one. The learner could select a concept set, which comes from declarative knowledge
in knowledge map, and the system would generate one item at first. The generated item is delivered to dialogue interface, which is an interface for learners operating problem solving strategies. The item also would be transferred to problem solving system in order to get the correct answer for comparing learners' response. The operation of learners' would compare data in the item information then decide the difficulty features of the next item.

![Image of System architecture of enhanced Item Generating System](image)

Figure 8. System architecture of enhanced Item Generating System

This research also uses Physics for example. Figure 9 displays the snapshot of selecting concept set from the learner. After selecting the concept set, which contains 1-dimension motion as the root node, the system generate a new item and create dialogue of asking question for diagnosing different difficulty features. To simplify the procedure of predicting difficulty value in the next item, each difficulty dimension use only one diagnosis feature to estimate the next possible value.

![Image of Selecting concept set](image)

Figure 9. Selecting concept set

Figure 10 ask learner the major concept of the item and influence the value of identification difficulty in next item. Furthermore, Figure 11 shows the question of given attributes, which determines the value of elaboration difficulty. The dialogue of asking problem solving path is demonstrated in Figure 12 and shows that the accurately use of physics law in the problem solving process is to find to proper way to get the answer. Figure 13 is the last question of all diagnosis and query the final answer. This step affects the execution difficulty value of the next item. After the whole diagnosing process, the system will display all the answer the learner replied and asks him to generate another item or reselect the concept set (Figure 14). This result will influence the next item.

![Image of Identification difficulty diagnosis](image)

Figure 10. Identification difficulty diagnosis

![Image of Elaboration difficulty diagnosis](image)

Figure 11. Elaboration difficulty diagnosis

![Image of Planning difficulty diagnosis](image)

Figure 12. Planning difficulty diagnosis

![Image of Execution difficulty diagnosis](image)

Figure 13. Execution difficulty diagnosis
6. Conclusion

This paper proposes a strategy of generating items iteratively. Based on the previous research in [7], the process of problem construction retains three stages but the previous two are enhanced including the way to select next concept and the algorithm for choosing next item based on difficulties setting. The whole procedure needs to define several data structures as item information to execute each step. Concept Information keeps data from knowledge map and use depth first search to decide the next major concept of the next item. Another important data in the entire procedure is Problem Matrix, which can be used to define diagnosis features to estimate the ability of problem solving operation from learners and use those data to evaluate the difficulty value of next item with Difficulty Table. In the end, an enhanced item generating system is constructed and has a small example to demonstrate the process.

The future work of this paper is integrating the idea of item response theory in to the architecture. Furthermore, how to make the interface of problem solving operation diagnosis more diversity and accurately is another task of the research.

Reference